
Masterstudium:
Computational Intelligence

Diplomarbeitspräsentation

Optimization Framework for the
CACAO VM

Josef Eisl

���
���
���
���
���

���
���
���
���
���

uages
comp
lang

uter

Technische Universität Wien
Institut für Computersprachen

Arbeitsbereich: Programmiersprachen und Übersetzer
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Virtual Machines

I Why Virtual Machines?
I Portability: Reduce the number of program

images from P×M to P + M.
I Runtime System: Virtual machines provide a

runtime system to the application, for instance
garbage collection or dynamic loading.

I Security: Program images can be signed and
verified prior execution.

I Program representation:
I Bytecode: A dedicated ahead-of-time compiler

converts the program source into a portable,
low-level representation (Java Bytecode,
Microsoft CLI, Pascal p-code).

I Source Code: The source code of the program
is supplied to the virtual machine. Usually the
VM compiles the source into bytecode.
Commonly used for “scripting languages”
(JavaScript, Python, Ruby).

if(

if(

if(

if(

._ ._ ._

010 010 010

010 010 010

010 010 010

010 010 010

if(

if(

if(

if(

010

010

010

010

._ ._ ._

⇓

I Execution:
I Interpretation: The virtual machine simulates the instructions of the

program.
I Compilation: The program is just-int-time (JIT) compiled into native

machine code.

Adaptive Optimization

I Why Adaptive Optimization?
I Interprete Everything: Program execution is too slow.
I Compile Everything: Program startup is too slow.

I Solution:
I Profile the runtime behavior and find frequently executed parts.
I Compile these hot methods with a high optimization level to generate

better performing machine code.
I Redirect all calls to the optimized machine code.

The CACAO VM

I Virtual Machine for Java bytecode [1]
I JIT-only approach:

I No interpreter but a fast baseline
compiler.

I Better performance than interpretation
but inferior code quality compared to
heavy weight optimizing compilers.

I Problem: Baseline compiler not
suitable for elaborate optimizations.
I Tuned for low compilation latency

(integrated passes, simple data
structures).

I Solution: Dedicated Optimization
Framework.
I Independent optimizing compiler.
I Focused on program optimization and

analysis.
I Make compiler-passes easy to

implement.

1st invokation

compile

optimize?

baseline compiler optimizing compiler

install code

execute

recompile?

profiling

no yes

no yes

Pass Manager

I Modular pass infrastructure with a clean interface.
I Pass objects encapsulate data and computation.
I Data exchange via Pass objects – no global data structures.

I Automatic pass scheduling based on interdependencies.
I Optional passes can be inserted on demand.
I Dynamic optimization profiles based on runtime information.

High-level IR

I Graph-based IR [2]
I SSA-form:

I No variables or register.
I No destructive assignment.
I Instructions represent values.

I Less restrictive:
I No explicit basic blocks.
I No fixed schedule:

I Floating nodes.

I Edge types:
I data edge
I control-flow edge
I scheduling edge

I Goal:
I Support pass development.
I Targeted on common tasks:

I Data-flow graph (DFG) traversal.
I Control-flow graph (CFG) traversal.

entry
BeginInst0

GOTOInst6

LOADInst4

BeginInst1

IFInst9

PHIInst8 PHIInst10

MULInst13

CONSTInst=15

CONSTInst=17

BeginInst2

GOTOInst14

BeginInst3

RETURNInst15

SUBInst12

CONSTInst=111

static long fact(long n) {
long res = 1;
while (1 < n) {

res *= n--;
}
return res;

}

0: BeginInst {6}
4: LOADInst = $0 <0>
5: CONSTInst = $1
6: GOTOInst [1]
1: BeginInst {9}

10: PHIInst (%5,%13) <1>
8: PHIInst (%4,%12) <1>
7: CONSTInst = $1
9: IFInst [2,3]
2: BeginInst {14}

13: MULInst (%8,%10)
11: CONSTInst = $1
12: SUBInst (%8,%11)
14: GOTOInst [1]
3: BeginInst {15}

15: RETURNInst (%10)

I Additional scheduling required:
I Arrange floating instruction in basic blocks (Global Scheduling).

Low-level IR

I Classic intermediate representation:
I Explicit basic blocks (already in linear order).
I Basic blocks consist of a list of instructions.

I Ideally one LIR instruction models one machine instruction.
I Explicit operands for data transfer:

I Virtual and physical registers, virtual and physical stack-slots, constants.

I Relaxed SSA-properties:
I Dominance property and single reaching definition (ϕ-nodes).
I Possible to express SSA-violating constraints (two-address instruction,

fixed register operand) and still use simple algorithms.

I Focused on register allocation and code generation.

Passes

I High-level passes:
I SSA construction, loop analysis, dominator analysis, basic

block/global/instruction scheduling, lowering to LIR
I Low-level passes:

I Lifetime analysis, linear scan register allocation, code generation

Results

§ Compile time: 30-50 times slower than the baseline compiler.
I Tuning potential. Not yet optimized towards this goal.

§ Higher memory consumption.
© Comparable codesize even without advanced optimizations.
© Optimizations are easy to implement, for instance:

I Deadcode elimination: single iteration over all instructions.
I Constant folding: single recursive traversal over instructions.
I No additional analysis required!

References

I Andreas Krall.
Efficient JavaVM Just-in-Time Compilation. 1998.

I Cliff Click and Michael Paleczny.
A Simple Graph-Based Intermediate Representation. 1995.

Kontakt: zapster@complang.tuwien.ac.at

