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Virtual Machines

I Why Virtual Machines?
I Portability: Reduce the number of program

images from P×M to P + M.
I Runtime System: Virtual machines provide a

runtime system to the application, for instance
garbage collection or dynamic loading.

I Security: Program images can be signed and
verified prior execution.

I Program representation:
I Bytecode: A dedicated ahead-of-time compiler

converts the program source into a portable,
low-level representation (Java Bytecode,
Microsoft CLI, Pascal p-code).

I Source Code: The source code of the program
is supplied to the virtual machine. Usually the
VM compiles the source into bytecode.
Commonly used for “scripting languages”
(JavaScript, Python, Ruby).
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I Execution:
I Interpretation: The virtual machine simulates the instructions of the

program.
I Compilation: The program is just-int-time (JIT) compiled into native

machine code.

Adaptive Optimization

I Why Adaptive Optimization?
I Interprete Everything: Program execution is too slow.
I Compile Everything: Program startup is too slow.

I Solution:
I Profile the runtime behavior and find frequently executed parts.
I Compile these hot methods with a high optimization level to generate

better performing machine code.
I Redirect all calls to the optimized machine code.

The CACAO VM

I Virtual Machine for Java bytecode [1]
I JIT-only approach:

I No interpreter but a fast baseline
compiler.

I Better performance than interpretation
but inferior code quality compared to
heavy weight optimizing compilers.

I Problem: Baseline compiler not
suitable for elaborate optimizations.
I Tuned for low compilation latency

(integrated passes, simple data
structures).

I Solution: Dedicated Optimization
Framework.
I Independent optimizing compiler.
I Focused on program optimization and

analysis.
I Make compiler-passes easy to

implement.
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Pass Manager

I Modular pass infrastructure with a clean interface.
I Pass objects encapsulate data and computation.
I Data exchange via Pass objects – no global data structures.

I Automatic pass scheduling based on interdependencies.
I Optional passes can be inserted on demand.
I Dynamic optimization profiles based on runtime information.

High-level IR

I Graph-based IR [2]
I SSA-form:

I No variables or register.
I No destructive assignment.
I Instructions represent values.

I Less restrictive:
I No explicit basic blocks.
I No fixed schedule:

I Floating nodes.

I Edge types:
I data edge
I control-flow edge
I scheduling edge

I Goal:
I Support pass development.
I Targeted on common tasks:

I Data-flow graph (DFG) traversal.
I Control-flow graph (CFG) traversal.
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static long fact(long n) {
long res = 1;
while (1 < n) {

res *= n--;
}
return res;

}

0: BeginInst {6}
4: LOADInst = $0 <0>
5: CONSTInst = $1
6: GOTOInst [1]
1: BeginInst {9}

10: PHIInst (%5,%13) <1>
8: PHIInst (%4,%12) <1>
7: CONSTInst = $1
9: IFInst [2,3]
2: BeginInst {14}

13: MULInst (%8,%10)
11: CONSTInst = $1
12: SUBInst (%8,%11)
14: GOTOInst [1]
3: BeginInst {15}

15: RETURNInst (%10)

I Additional scheduling required:
I Arrange floating instruction in basic blocks (Global Scheduling).

Low-level IR

I Classic intermediate representation:
I Explicit basic blocks (already in linear order).
I Basic blocks consist of a list of instructions.

I Ideally one LIR instruction models one machine instruction.
I Explicit operands for data transfer:

I Virtual and physical registers, virtual and physical stack-slots, constants.

I Relaxed SSA-properties:
I Dominance property and single reaching definition (ϕ-nodes).
I Possible to express SSA-violating constraints (two-address instruction,

fixed register operand) and still use simple algorithms.

I Focused on register allocation and code generation.

Passes

I High-level passes:
I SSA construction, loop analysis, dominator analysis, basic

block/global/instruction scheduling, lowering to LIR
I Low-level passes:

I Lifetime analysis, linear scan register allocation, code generation

Results

§ Compile time: 30-50 times slower than the baseline compiler.
I Tuning potential. Not yet optimized towards this goal.

§ Higher memory consumption.
© Comparable codesize even without advanced optimizations.
© Optimizations are easy to implement, for instance:

I Deadcode elimination: single iteration over all instructions.
I Constant folding: single recursive traversal over instructions.
I No additional analysis required!
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