EAKULTAT Diplomarbeitsprasentation
FUR INFORMATIK elppjouter

EllsJuages

Faculty of Informatics

Optimization Framework for the
Masterstudium: CACAO VM Technische Universitat Wien

Institut fir Computersprachen

Computational Intelligence Arbeitsbereich: Programmiersprachen und Ubersetzer
Josef Eis| Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Virtual Machines) (High-level IR)
: : 4) 4 sy)
> Why Virtual Machines? il » Graph-based IR [2] I
» Portability: Reduce the number of program . SSA-form: o <[cotoms
' S < }
Mages fromP x M J,[O P+M. , , i o T o T P » No variables or register. g T p_Begini “\ug il
» Runtime System: Virtual machines provide a —~ BB . No destructive assignment \ I\ _—
runtime system to the application, for instance = U . Instructions represent values / \T\R\\
garbage collection or dynamic loading. F A ou]-{oze[-{aze . Less restrictive: | - (ConsTnem o e (Moo
» Security: Program images can be signed and 5 (|- 010/-+/010"+ 010 No explicit basic t;locks 2 / ~
verified prior execution. - / : NG fixgd schedule: | i i
» Program representation: Y » Floating nodes . "
B _ : : : 4 ™ ' o %
» Bytecode: A dedicated ahead-of-time compiler » Edge types:
converts the program source into a portable, o o o . data edge — (ecmtso 10ng tacciona = 1) (URESRERRE
low-level representation (Java Bytecode, y 9§ . control-flow edge — while 1 < constinet = 91
Microsoft CLI, Pascal p-code). il [oroklft . scheduling edge —» R Chtmaar (83,813) <>
~ Source Code: The source code of the program | [| 7 . Goal: - / s
is supplied to the virtual machine. Usually the e S, ' ort bass development e
. . L (0101 7 . > . CONSTInst = $1
VM compiles the source into bytecode. | R Tar%%tedpon commonptaSKS' corotnse (1)
Commonly used for “scripting languages” » Data-flow graph (DFG) traversal. e (40
. o / grap NG /
(JavaScript, Python, Ruby). » Control-flow graph (CFG) traversal.
» Execution: » Additional scheduling required:
> Interpretation: The virtual machine simulates the instructions of the > Arrange f|oating instruction in basic blocks (G|Oba| Schedu”ng)_
program.
» Compilation: The program is just-int-time (JIT) compiled into native
machine code. (Low-level IR J
Adaptive Optimization J > Classllq mtgrmedlate repr.es.entatlon:
» EXxplicit basic blocks (already in linear order).
_ S » Basic blocks consist of a list of instructions.
> Why Adaptlve Optlmlzatlon? » Ideally one LIR instruction models one machine instruction.
» Interprete Everything: Program execution is too slow. » Explicit operands for data transfer:
» Compile Everything: Program startup is too slow. » Virtual and physical registers, virtual and physical stack-slots, constants.
» Solution: » Relaxed SSA-properties:
» Profile the runtime behavior and find frequently executed parts. » Dominance property and single reaching definition (¢p-nodes).
» Compile these hot methods with a high optimization level to generate » Possible to express SSA-violating constraints (two-address instruction,
better performing machine code. fixed register operand) and still use simple algorithms.

» Redirect all calls to the optimized machine code. » Focused on register allocation and code generation.

The CACAO VM) (Passos)
» Virtual Machine for Java bytecode [1] » High-level passes:
> JIT'O_nly approach: | » SSA construction, loop analysis, dominator analysis, basic
~ No interpreter but a fast baseline e ~ block/global/instruction scheduling, lowering to LIR
compiler. | | » Low-level passes:
~ Better performance than interpretation » Lifetime analysis, linear scan register allocation, code generation
but inferior code quality compared to ‘<_
heavy weight optimizing compilers. “) A
» Problem: Baseline compiler not [Results]
suitable for elaborate optimizations. 0
~ Tuned for low compilation latency paseine compier | | optmizing comper © Compile time: 30-50 times slower than the baseline compiler.
(integrated passes, simple data - B » Tuning potential. Not yet optimized towards this goal.
structures). L ® Higher memory consumption.
» Solution: Dedicated Optimization 1 . . L
Framework. © Comparable codesize even without advanced optimizations.
. Independent optimizing compiler. o © Optimizations are easy to implement, for instance:
> Focused on program Optlmlzatlon and — recompile? - / > DeadCOde elimination: Slngle |terat|0n over a.” |nStrUCt|OnS
analysis. » Constant folding: single recursive traversal over instructions.
. Make compiler-passes easy to - / ~ No additional analysis required!
Implement.
[References]
Pass Manager)
: . _ » Andreas Krall.
» Modular pass infrastructure with a clean interface. Efficient JavaVM Just-in-Time Compilation. 1998
» Pass objects encapsulate data and computation. | |
» Data exchange via Pass objects — no global data structures. » Cliff Click and Michael Paleczny.
» Automatic pass scheduling based on interdependencies. A Simple Graph-Based Intermediate Representation. 1995.

» Optional passes can be inserted on demand.
» Dynamic optimization profiles based on runtime information.

‘ Kontakt: zapster@complang.tuwien.ac.at

