
Parameterized Complexity

Josef Eisl

Seminar in Algorithms
186.182

November 20, 2012

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 1 / 37

Table of contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 2 / 37

Introduction

Motivation

Example

1

2

3

4

5

6

7

8

9

10

• Is there a path between vertex 1 and vertex 9 of size at most 5?

• Is there a vertex cover of size at most 5?

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 3 / 37

Introduction

Motivation

Example

1

2

3

4

5

6

7

8

9

10

• Is there a path between vertex 1 and vertex 9 of size at most 5?

• Is there a vertex cover of size at most 5?

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 3 / 37

Introduction

Motivation

Example

1

2

3

4

5

6

7

8

9

10

• Is there a path between vertex 1 and vertex 9 of size at most 5?

• Is there a vertex cover of size at most 5?

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 3 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem

• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems

• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems

• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems

• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)

• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm

• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm
• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm
• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Complexity Theory

• Analyse how hard it is to solve a problem
• w.r.t. computation time (and space)

• Distinguish easy (tractable) and difficult (intractable) problems
• Tractable: can be solved in polynomial time

• The complexity class P (polynomial-time)
• Runtime bounds: nO(1)

• Example: Reachability, Sorting, . . .

• Intractable: no hope for polynomial time algorithm
• The complexity class NP (nondet.-polynomial time) or higher

• Runtime bounds: 2n
O(1)

• Example: Vertex Cover, Sat, Dominating Set, . . .

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 4 / 37

Introduction Computational Complexity

Definition of Problems

Definition (Problem)

A problem is a task/question together with an infinite set of instances.

Problem (Sat)

Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

Example (Instance of Sat)

(A ∨ ¬B ∨ C) ∧ (D ∨ B) ∧ (D ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬A ∨ B)

• What kind of problems are we interested in?

• Decision problems (yes/no answer)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 5 / 37

Introduction Computational Complexity

Definition of Problems

Definition (Problem)

A problem is a task/question together with an infinite set of instances.

Problem (Sat)

Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

Example (Instance of Sat)

(A ∨ ¬B ∨ C) ∧ (D ∨ B) ∧ (D ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬A ∨ B)

• What kind of problems are we interested in?

• Decision problems (yes/no answer)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 5 / 37

Introduction Computational Complexity

Definition of Problems

Definition (Problem)

A problem is a task/question together with an infinite set of instances.

Problem (Sat)

Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

Example (Instance of Sat)

(A ∨ ¬B ∨ C) ∧ (D ∨ B) ∧ (D ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬A ∨ B)

• What kind of problems are we interested in?

• Decision problems (yes/no answer)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 5 / 37

Introduction Computational Complexity

Definition of Problems

Definition (Problem)

A problem is a task/question together with an infinite set of instances.

Problem (Sat)

Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

Example (Instance of Sat)

(A ∨ ¬B ∨ C) ∧ (D ∨ B) ∧ (D ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬A ∨ B)

• What kind of problems are we interested in?

• Decision problems (yes/no answer)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 5 / 37

Introduction Computational Complexity

Definition of Problems

Definition (Problem)

A problem is a task/question together with an infinite set of instances.

Problem (Sat)

Instance: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

Example (Instance of Sat)

(A ∨ ¬B ∨ C) ∧ (D ∨ B) ∧ (D ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬A ∨ B)

• What kind of problems are we interested in?
• Decision problems (yes/no answer)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 5 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm

• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?

• Clever algorithms solve many instances
efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP

• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?

• Clever algorithms solve many instances
efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?

• Clever algorithms solve many instances
efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?

• Clever algorithms solve many instances
efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?

• Clever algorithms solve many instances
efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?

• Clever algorithms solve many instances
efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?
• Clever algorithms solve many instances

efficiently:

• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?
• Clever algorithms solve many instances

efficiently:
• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?
• Clever algorithms solve many instances

efficiently:
• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

Intractability: The Class NP and beyond

• No hope for polynomial time algorithm
• NP-hard: at least in the class NP
• NP-complete: known to be in the class NP

• Combinatorial explosion! 2n
O(1)

• So NP-hard problem can’t be solved?
• Clever algorithms solve many instances

efficiently:
• ILP, SAT solver, . . .

• But there is always a bad instance

com
p

lexityNP

NP-complete

NP-hard

P

Conjecture

P 6= NP

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 6 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view

• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set

• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph

• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Computational Complexity

The Source of the Hardness

• What are the real world instances?

• Why do the worst case exponential algorithms work in practice?

• What properties does separate a good instance from a bad?

• Can we somehow “measure” this properties?

Definition (Parameterized Problem)

A parameterized problem is a task/question together with an infinite set of
instances and a parameter, often denoted by k .

• Look at the problem from a two-dimensional point of view
• Parameter: anything that classifies the problem instances, e.g.:

• Size of the solution set
• Treewidth of a graph
• Max. number of literals in the clauses of a CNF-formula

• Some parameters are useful, most are not!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 7 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time

• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time

• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time

• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time
• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time
• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time
• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class FPT

Definition

A parameterized problem is fixed-parameter tractable (FPT) w.r.t.
parameter k if it can be computed in f (k) · nO(1) time where f (k) is only
depending on k .

• Shift the combinatorial explosion into the parameter

• In other words: if k is fixed, we can solve the problem in polynomial
time
• The problem gets tractable

• Remark 1: FPT results are always with respect to a parameter!

• Remark 2: There is no bound on f (k) → might be huge!

Parameterized complexity is based on a deal with the devil of
intractability. (R.G. Downey and M.R. Fellows)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 8 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?

• In the class W[1] or higher
• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]

• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size

• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?
• In the class W[1] or higher

• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]

• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size

• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?
• In the class W[1] or higher
• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]

• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size

• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?
• In the class W[1] or higher
• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]

• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size

• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?
• In the class W[1] or higher
• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]
• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size

• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?
• In the class W[1] or higher
• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]
• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size

• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Introduction Parameterized Complexity Theory

The Class W[1] and beyond

• If a problem stays intractable w.r.t. a parameter?
• In the class W[1] or higher
• Hardness proofs by reduction

• Parameterized Complexity hierarchy W[t]
• Similar to the polynomial hierarchy

• Example: CNF-Sat with parameter k = maximal clause size
• intractable for k ≥ 3

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 9 / 37

Fixed-Parameter Techniques

Table of Contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 10 / 37

Fixed-Parameter Techniques

The concept of FPT belongs into the toolkit of every algorithm
designer.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 11 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Table of Contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 12 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession

• Cut away the easy parts

• What remains is a core that is difficult to solve

• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!

• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve

• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!

• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve

• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!

• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!

• Otherwise P = NP

• Not only important for fixed-parameter algorithms!

• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!

• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!

• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!
• Also other approaches: approximation, heuristics, . . .

• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!
• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!
• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:

• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!
• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:
• parameter-independent: do not need to know the parameter

• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Data Reduction

• Polynomial-time pre-procession
• Cut away the easy parts

• What remains is a core that is difficult to solve
• Note: the same hardness as the original problem!
• Otherwise P = NP

• Not only important for fixed-parameter algorithms!
• Also other approaches: approximation, heuristics, . . .
• If there are (practical) data reductions then use them!

• Two kinds of rules:
• parameter-independent: do not need to know the parameter
• parameter-dependent: need explicit knowledge about the parameter

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 13 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Weihe’s train problem

Problem (Weihe’s Train Problem)

Instance: A bipartite graph G = (S ,T ,E) with stations S and trains T
and a positive integer k.
Question: Is there a S ′ ⊆ S of size k so that every train stops at a station
in S ′.

• Special case of Hitting Set → NP-complete

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 14 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Weihe’s train problem

Problem (Weihe’s Train Problem)

Instance: A bipartite graph G = (S ,T ,E) with stations S and trains T
and a positive integer k.
Question: Is there a S ′ ⊆ S of size k so that every train stops at a station
in S ′.

• Special case of Hitting Set → NP-complete

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 14 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Weihe’s train problem

Problem (Weihe’s Train Problem)

Instance: A bipartite graph G = (S ,T ,E) with stations S and trains T
and a positive integer k.
Question: Is there a S ′ ⊆ S of size k so that every train stops at a station
in S ′.

• Special case of Hitting Set → NP-complete

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 14 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}

• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}

• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}

• delete s4

t1

t2

t3

t4

s1

s2

s3

s4

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}

• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}

• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}

• delete s4

t1

t2

t3

t4

s1s1

s2s2

s3

s4

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}
• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}

• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}

• delete s4

t1

t2

t3

t4

s1

s3

s4

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}
• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}

• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}

• delete s4

t1t1

t2t2

t3

t4

s1

s3

s4

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}
• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}
• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}

• delete s4

t2

t3

t4

s1

s3

s4

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}
• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}
• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}

• delete s4

t2

t3

t4

s1

s3s3

s4s4

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Weihe’s train problem

Definition (Weihe’s reduction rules)

For s, s ′ ∈ S and t, t ′ ∈ T . N(v) denotes the of neighbours of v .

Station Rule N(s) ⊆ N(s ′) then delete s.

Train Rule N(t) ⊆ N(t ′) then delete t ′.

Example

• Station Rule:
N(s2) = {t2} ⊆ N(s1) = {t1, t2, t4}
• delete s2

• Train Rule:
N(t2) = {s1, s3} ⊆ N(t1) = {s1, s3, s5}
• delete t1

• Station Rule: N(s4) = {t3} ⊆ N(s3) = {t2, t3}
• delete s4

t2

t3

t4

s1

s3

s5

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 15 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:

• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!

• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)

• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!

• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!

• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!

• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!

• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!

• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!
• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!
• No guarantee that it works on all instances

• Can we prove the quality of other reductions?

• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Weihe’s train problem

• Works very well in practice:
• Evaluation on real data (European train systems)
• About 10 000 vertices reduced to sub-problems of size ≤ 50

• Only parameter-independent rules

• Does not find all possible solutions

• Drawback: we can not prove the effectiveness of this reduction!
• No guarantee that it works on all instances

• Can we prove the quality of other reductions?
• Yes → Problem Kernels (next slide)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 16 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)

• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)

• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)

• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)

• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)

• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)

• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Problem Kernels

Definition (Problem Kernel)

Reduction to a problem kernel means to replace the instance (I , k) by a
reduced instance (I ′, k ′) such that

• k ′ ≤ k and |I ′| ≤ g(k) where I is the problem instance, k is the
parameter and g(k) is a function solely depending on k,

• (I , k) is a positive instance iff (I ′, k ′) is one,

• the transformation from (I , k) to (I ′, k ′) must be computable in
polynomial time.

• The upper bound of the kernel is independent of the input size!

• The solution to (I ′, k ′) must not yield a solution to (I , k)
• But most time it does!

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 17 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Vertex Cover: Buss’s reduction to a Problem Kernel

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Vertex Cover is the most intensively studied problem in the FPT
community

Buss’s reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V .

VC3 For a vertex with degree > k , put this vertex into the cover
and delete it form the graph.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 18 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Vertex Cover: Buss’s reduction to a Problem Kernel

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Vertex Cover is the most intensively studied problem in the FPT
community

Buss’s reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V .

VC3 For a vertex with degree > k , put this vertex into the cover
and delete it form the graph.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 18 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Vertex Cover: Buss’s reduction to a Problem Kernel

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Vertex Cover is the most intensively studied problem in the FPT
community

Buss’s reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V .

VC3 For a vertex with degree > k , put this vertex into the cover
and delete it form the graph.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 18 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Vertex Cover: Buss’s reduction to a Problem Kernel

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Vertex Cover is the most intensively studied problem in the FPT
community

Buss’s reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V .

VC3 For a vertex with degree > k , put this vertex into the cover
and delete it form the graph.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 18 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Vertex Cover: Buss’s reduction to a Problem Kernel

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Vertex Cover is the most intensively studied problem in the FPT
community

Buss’s reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V .

VC3 For a vertex with degree > k , put this vertex into the cover
and delete it form the graph.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 18 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Vertex Cover: Buss’s reduction to a Problem Kernel

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Vertex Cover is the most intensively studied problem in the FPT
community

Buss’s reduction:

VC1 Remove all isolated vertices.

VC2 For every degree-1 vertex, put the neighbour into the cover
and delete both vertices from V .

VC3 For a vertex with degree > k , put this vertex into the cover
and delete it form the graph.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 18 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

1

2

3

4

5

6

7

8

9

10

Cover: {} k = 5

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

1

2

3

4

5

6

7

8

9

1010

Cover: {} k = 5

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

1

2

3

4

5

6

7

8

9

Cover: {} k = 5

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

11

2

3

4

5

6

7

8

9

Cover: {} k = 5

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

2

3

5

6

7

8

9

Cover: {4} k = 4

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

2

3

5

6

7

88

9

Cover: {4} k = 4

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

2

3

5

6

7

9

Cover: {4, 8} k = 3

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

2

3

5

6

7

99

Cover: {4, 8} k = 3

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Example: Buss’s reduction

Example

2

3

5

6

Cover: {4, 8, 7} k = 2

• VC1: vertex 10

• VC2: vertex 1

• VC3: vertex 8

• VC2: vertex 9

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 19 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:

• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges

• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices

• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)

• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph

• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph
• Exhaustive search

• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph
• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Properties: Buss’s reduction

• Apply rule VC1-VC3 exhaustively:
• ≤ k2 edges
• ≤ k2 vertices
• Only if (G , k) is a positive instances of Vertex Cover

• Can be done in O(k · |V |)
• Rule VC1 and VC2 are parameter-independent

• Rule VC3 is parameter-dependent

• Search solution in the remaining graph
• Exhaustive search
• Any other (exact) Vertex Cover algorithm

• Find at least one solution but not all

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 20 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important

• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance

• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance

• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance

• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance

• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance
• Parameter k is too big

• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance
• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance
• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Data Reduction and Problem Kernels

Conclusion problem kernels

• Data reductions and problem kernels are important
• Not only for fixed-parameter algorithms

• Some data reduction can not be proven but work well in practice

• Some kernelization results are only of theoretical importance
• Parameter k is too big
• The bound on the kernel size g(k) is useless

• Proven problem kernels provide upper bounds

Kernelizations can explain, and prove, why rules work so well in
practice.

(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 21 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Table of Contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 22 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Search Trees

• Exhaustively search for a solution in a tree-like fashion

• Used in many algorithms (e.g. in Sat-solving)

• Fixed-Parameter Algorithms: depth is bounded by k

• Small k leads to a small search tree

• Can be combined with data reduction rules

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 23 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Search Trees

• Exhaustively search for a solution in a tree-like fashion
• Used in many algorithms (e.g. in Sat-solving)

• Fixed-Parameter Algorithms: depth is bounded by k

• Small k leads to a small search tree

• Can be combined with data reduction rules

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 23 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Search Trees

• Exhaustively search for a solution in a tree-like fashion
• Used in many algorithms (e.g. in Sat-solving)

• Fixed-Parameter Algorithms: depth is bounded by k

• Small k leads to a small search tree

• Can be combined with data reduction rules

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 23 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Search Trees

• Exhaustively search for a solution in a tree-like fashion
• Used in many algorithms (e.g. in Sat-solving)

• Fixed-Parameter Algorithms: depth is bounded by k
• Small k leads to a small search tree

• Can be combined with data reduction rules

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 23 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Search Trees

• Exhaustively search for a solution in a tree-like fashion
• Used in many algorithms (e.g. in Sat-solving)

• Fixed-Parameter Algorithms: depth is bounded by k
• Small k leads to a small search tree

• Can be combined with data reduction rules

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 23 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex

• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:

• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex

• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:

• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not

• Search tree of size O(2n)

• Fixed-parameter approach:

• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:

• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:

• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:
• By definition for each edge {v ,w} ∈ E one vertex must be in the cover

• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:
• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges

• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:
• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}

• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Depth-bound search tree: Vertex Cover

Problem (Vertex Cover)

Instance: A graph G = (V ,E) and a nonnegative integer k.
Question: Is there a subset of vertices C ⊆ V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C .

• Näıve approach: branch on vertex
• Either the vertex is in the cover or not
• Search tree of size O(2n)

• Fixed-parameter approach:
• By definition for each edge {v ,w} ∈ E one vertex must be in the cover
• Branch on the edges
• Continue the search for a k − 1 cover in G \ {v} and G \ {w}
• Search tree bounded by O(2k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 24 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:

• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:

• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:

• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:

• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set

• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:

• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:
• either v is in the cover

• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:
• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover

1 Vertex of degree 1: put the neighbour into the cover (like VC2)

2 Vertex v of degree 2:
• either both neighbours are in the set
• or v together with all the neighbours of the neighbours

3 Vertex v of degree at least 3:
• either v is in the cover
• or all its neighbours

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 25 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover (2)

• Finer case distinction

• Search tree size O(1.47k)
• Best search tree known to-date: O(1.28k)

• Even more extensive case distinction
• Organisational overhead hidden by O(·) notation

k
0 1 2

f (k)

1

2

4

6
O(2k)

O(1.47k)

O(1.28k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 26 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover (2)

• Finer case distinction

• Search tree size O(1.47k)

• Best search tree known to-date: O(1.28k)

• Even more extensive case distinction
• Organisational overhead hidden by O(·) notation

k
0 1 2

f (k)

1

2

4

6
O(2k)

O(1.47k)

O(1.28k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 26 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover (2)

• Finer case distinction

• Search tree size O(1.47k)
• Best search tree known to-date: O(1.28k)

• Even more extensive case distinction
• Organisational overhead hidden by O(·) notation

k
0 1 2

f (k)

1

2

4

6
O(2k)

O(1.47k)

O(1.28k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 26 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover (2)

• Finer case distinction

• Search tree size O(1.47k)
• Best search tree known to-date: O(1.28k)

• Even more extensive case distinction
• Organisational overhead hidden by O(·) notation

k
0 1 2

f (k)

1

2

4

6
O(2k)

O(1.47k)

O(1.28k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 26 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover (2)

• Finer case distinction

• Search tree size O(1.47k)
• Best search tree known to-date: O(1.28k)

• Even more extensive case distinction

• Organisational overhead hidden by O(·) notation

k
0 1 2

f (k)

1

2

4

6
O(2k)

O(1.47k)

O(1.28k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 26 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Impr. Depth-bound search tree: Vertex Cover (2)

• Finer case distinction

• Search tree size O(1.47k)
• Best search tree known to-date: O(1.28k)

• Even more extensive case distinction
• Organisational overhead hidden by O(·) notation

k
0 1 2

f (k)

1

2

4

6
O(2k)

O(1.47k)

O(1.28k)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 26 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset

• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions

• May decrease practical performance
• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset
• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions

• May decrease practical performance
• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset
• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions

• May decrease practical performance
• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset
• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions
• May decrease practical performance

• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset
• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions
• May decrease practical performance
• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset
• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions
• May decrease practical performance
• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Depth-Bounded Search Trees

Conclusion search trees

• Branch on a small subset
• One of the elements must be in the solution

• Shrink search tree with more involved case distinctions
• May decrease practical performance
• Computer aided case distinctions

• Combining with (interleaved) data reduction is very fruitful

The art of case distinction.
(Rolf Niedermeier, Friedrich-Schiller-Universität Jena)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 27 / 37

Fixed-Parameter Techniques Iterative Compression

Table of Contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 28 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression

Definition (Compression Routine)

A compression routine that, given a problem instance and a solution of
size k, either calculates a smaller solution or proves that the given solution
is of minimum size.

• To find a solution iteratively call the compression routine

• If the compression routine is fixed-parameter algorithm

• → so is the whole algorithm

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 29 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression

Definition (Compression Routine)

A compression routine that, given a problem instance and a solution of
size k, either calculates a smaller solution or proves that the given solution
is of minimum size.

• To find a solution iteratively call the compression routine

• If the compression routine is fixed-parameter algorithm

• → so is the whole algorithm

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 29 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression

Definition (Compression Routine)

A compression routine that, given a problem instance and a solution of
size k, either calculates a smaller solution or proves that the given solution
is of minimum size.

• To find a solution iteratively call the compression routine

• If the compression routine is fixed-parameter algorithm

• → so is the whole algorithm

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 29 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression

Definition (Compression Routine)

A compression routine that, given a problem instance and a solution of
size k, either calculates a smaller solution or proves that the given solution
is of minimum size.

• To find a solution iteratively call the compression routine

• If the compression routine is fixed-parameter algorithm
• → so is the whole algorithm

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 29 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.

2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.

• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]

• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Iterative Compression: Vertex Cover

Algorithm

1 Set V ′ := ∅ and C := ∅.
2 For each vertex v ∈ V :

• Set V ′ := V ′ ∪ {v} and C := C ∪ {v}.
• Call the compression routine for (G [V ′],C).

3 Output C .

• Invariant: C is always a minimal vertex cover for G [V ′]

• C ∪ {v} is a valid vertex cover for G [V ′ ∪ {v}]
• The compression routine yields the optimal solution for the subgraph

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 30 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C

• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C

• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C

• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:

• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:
• Y is already in the cover → remaining instance: G [V ′ \ Y]

• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:
• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:
• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort

• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:
• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:
• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Iterative Compression

Compression Routine: Vertex Cover

Algorithm

Input: cover C and graph G [V ′]

• C ′ is a modification of C
• Some vertices remain in the cover Y ⊆ C
• Other vertices S := C \ Y are replaced

• |S | − 1 new vertices from V ′ \ C

• Idea: search all 2|C | partitions of C into Y and S

• For all partitions:
• Y is already in the cover → remaining instance: G [V ′ \ Y]
• We do not take any vertices from S into the cover:

• If there is an edge with both endpoints in S abort
• For all other edges: take the one endpoint that is not in S

• Runtime compression routine: O(2|C |m)

• Runtime fixed-parameter algorithm: O(2km · n)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 31 / 37

Fixed-Parameter Techniques Further Techniques

Table of Contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 32 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results

• Table lookups
• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight

• Runtime O(W · n)
• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results
• Table lookups

• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight

• Runtime O(W · n)
• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results
• Table lookups
• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight

• Runtime O(W · n)
• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results
• Table lookups
• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight

• Runtime O(W · n)
• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results
• Table lookups
• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight
• Runtime O(W · n)

• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results
• Table lookups
• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight
• Runtime O(W · n)
• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Dynamic Programming

• Goal: prevent recomputation by storing intermediate results
• Table lookups
• Bottom up vs. recursive calculation (e.g. binomial coefficients)

• Example: Binary Knapsack (AD1) with parameter W weight
• Runtime O(W · n)
• pseudo-polynomial-time algorithm

• Use dynamic programming to shrink depth-bounded search trees

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 33 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees

• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is

• Remark: trees have a treewidth of 1

• Basic approach:

• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is

• Remark: trees have a treewidth of 1

• Basic approach:

• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is

• Remark: trees have a treewidth of 1

• Basic approach:

• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is

• Remark: trees have a treewidth of 1

• Basic approach:

• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is
• Remark: trees have a treewidth of 1

• Basic approach:

• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is
• Remark: trees have a treewidth of 1

• Basic approach:

• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is
• Remark: trees have a treewidth of 1

• Basic approach:
• Find a tree decomposition of a graph

• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Fixed-Parameter Techniques Further Techniques

Tree Decomposition

• Motivation: many hard graph problems are easy on trees
• e.g. Vertex Cover, Dominating Set, . . .

• What makes trees so nice and can this be extended to general graphs?

• Treewidth: measures how tree-like a graph is
• Remark: trees have a treewidth of 1

• Basic approach:
• Find a tree decomposition of a graph
• Solve the problem on this tree decomposition

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 34 / 37

Conclusion

Table of Contents

1 Introduction
Computational Complexity
Parameterized Complexity Theory

2 Fixed-Parameter Techniques
Data Reduction and Problem Kernels
Depth-Bounded Search Trees
Iterative Compression
Further Techniques

3 Conclusion

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 35 / 37

Conclusion

Conclusion

In parameterized complexity the focus is on the question: What
makes the problem computationally
difficult? (R.G. Downey and M.R. Fellows)

• Parameterized Complexity Theory can explain where the hardness of a
problem comes from.

• Fixed-parameter algorithms are narrowing the gap between theory and
practice.

• Problem kernels and data reductions are important! Even outside
FPAs.

• Sometimes they can even explain why algorithms work in practice.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 36 / 37

Conclusion

Conclusion

In parameterized complexity the focus is on the question: What
makes the problem computationally
difficult? (R.G. Downey and M.R. Fellows)

• Parameterized Complexity Theory can explain where the hardness of a
problem comes from.

• Fixed-parameter algorithms are narrowing the gap between theory and
practice.

• Problem kernels and data reductions are important! Even outside
FPAs.

• Sometimes they can even explain why algorithms work in practice.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 36 / 37

Conclusion

Conclusion

In parameterized complexity the focus is on the question: What
makes the problem computationally
difficult? (R.G. Downey and M.R. Fellows)

• Parameterized Complexity Theory can explain where the hardness of a
problem comes from.

• Fixed-parameter algorithms are narrowing the gap between theory and
practice.

• Problem kernels and data reductions are important! Even outside
FPAs.

• Sometimes they can even explain why algorithms work in practice.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 36 / 37

Conclusion

Conclusion

In parameterized complexity the focus is on the question: What
makes the problem computationally
difficult? (R.G. Downey and M.R. Fellows)

• Parameterized Complexity Theory can explain where the hardness of a
problem comes from.

• Fixed-parameter algorithms are narrowing the gap between theory and
practice.

• Problem kernels and data reductions are important! Even outside
FPAs.

• Sometimes they can even explain why algorithms work in practice.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 36 / 37

Conclusion

Conclusion

In parameterized complexity the focus is on the question: What
makes the problem computationally
difficult? (R.G. Downey and M.R. Fellows)

• Parameterized Complexity Theory can explain where the hardness of a
problem comes from.

• Fixed-parameter algorithms are narrowing the gap between theory and
practice.

• Problem kernels and data reductions are important! Even outside
FPAs.

• Sometimes they can even explain why algorithms work in practice.

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 36 / 37

Conclusion

Thank You!

This is a subject that every computer scientist should know
about. (Foinn Murtagh, University of London)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 37 / 37

Conclusion

Thank You!
This is a subject that every computer scientist should know
about. (Foinn Murtagh, University of London)

Josef Eisl (Seminar in Algorithms 186.182) Parameterized Complexity November 20, 2012 37 / 37

	Introduction
	Computational Complexity
	Parameterized Complexity Theory

	Fixed-Parameter Techniques
	Data Reduction and Problem Kernels
	Depth-Bounded Search Trees
	Iterative Compression
	Further Techniques

	Conclusion

